Beyond Functional Harmony Wayne Naus Pdf Reader

TrumpetBeyond

Wayne Naus

I just loaded a Birth By Sleep Final Mix PSP save on my PS3 and it works fine! Just follow these steps: 1. Use SaveGame Deemer or SED or JPCSP or any other PSP savegame decrypter to decrypt a PlayStation Portable BBSFM save. As an file sharing search engine DownloadJoy finds wayne naus beyond functional harmony files matching your search criteria among the files that has been seen recently in uploading sites by our search spider.

Trumpet

Wayne Naus Trumpet

<ul><li><p>A PERMUTATIONAL TRIADIC APPROACH TO JAZZ HARMONY AND </p><p>THE CHORD/SCALE RELATIONSHIP </p><p>A Dissertation </p><p>Submitted to the Graduate Faculty of the </p><p>Louisiana State University and </p><p>Agricultural Mechanical College </p><p>in partial fulfillment of the </p><p>requirements for the degree of </p><p>Doctor of Philosophy </p><p>in </p><p>The School of Music </p><p>by </p><p>John Bishop </p><p>B.M., Berklee College, 1990 </p><p>M.M., University of Louisville, 2004 </p><p>December 2012 </p></li><li><p>ii </p><p>To Quentin Sharpenstein </p></li><li><p>iii </p><p>The harmonic, simple, and direct triad is the true and unitrisonic root of all </p><p>the most perfect and most complete harmonies that can exist in the world. It is the </p><p>root of even thousands and millions of sounds.The triad is the image of that great mystery, the divine and solely adorable Unitrinity (I cannot think of a </p><p>semblance more lucid). All the more, therefore, should theologians and </p><p>philosophers direct their attention to it, since at present they know fundamentally </p><p>little, and in the past they knew practically nothing about it.It is much employed in practice and, as will soon be seen, stands as the greatest, sweetest, </p><p>and clearest compendium of musical composition.This triad I have observed since boyhood (with only God and nature as my guides), I now study it by way of </p><p>a pastime, and I hope to see it perfected with Gods help, to Whom be praise forever. </p><p> Johannes Lippius, Synopsis of New Music (Synopsis Musicae Novae). </p><p> God has wrought many things out of oppression. He has endowed his </p><p>creatures with the capacity to createand from this capacity has flowed the sweet songs of sorrow and joy that have allowed man to cope with his environment and </p><p>many different situations. </p><p>Jazz speaks for life. The Blues tell a story of lifes difficulties, and if you think for a moment, you will realize that they take the hardest realities of life and put them </p><p>into music, only to come out with some new hope or sense of triumph. </p><p>This is triumphant music. </p><p>Modern jazz has continued in this tradition, singing songs of a more complicated </p><p>urban experience. When life itself offers no order of meaning, the musician </p><p>creates an order and meaning from the sounds of the earth, which flow through </p><p>his instrument. </p><p>Much of the power of our Freedom Movement in the United States has come from </p><p>this music. It has strengthened us with its sweet rhythms when courage began to </p><p>fail. It has calmed us with its rich harmonies when spirits were down. </p><p> Dr. Martin Luther King, Jr., Opening Address to the 1964 Berlin Jazz Festival. </p><p> For musicwe could envisage the question of how to perform abstract algebraic structures. This is a deep question, since making music is intimately </p><p>related to the expression of thoughts. So we would like to be able to express </p><p>algebraic insights, revealed by the use of K-nets or symmetry groups, for </p><p>example, in terms of musical gestures. To put it more strikingly: Is it possible to play the music of thoughts? </p><p> Guerino Mazzola and Moreno Andreatta, Diagrams, Gestures and Formulae in Music. </p></li><li><p>iv </p><p>ACKNOWLEDGEMENTS </p><p>I would like to express my appreciation for my family and their support and inspiration </p><p>throughout this process. My wife, Dim Mai Bishop and my children Sarah Ngc Vn Bishop </p><p>and Jonah Ngc Qy Bishop; my parents, John Bishop Jr., Nancy Bishop, V Ng Dng, and </p><p>V H Lan Nha; and my siblings, Karen Bishop-Holst and V Ng H Ngc. Without their help, </p><p>this work would not be possible. I hope they see it as an expression of my love for them. </p><p> I would also like to thank those at Louisiana State University. My advisor, Dr. Robert </p><p>Peck for inspiring me to pursue studies in mathematics and for his patience while I was learning. </p><p>Also, Dr. Jeffrey Perry and Dr. David Smyth were instrumental in my understanding of </p><p>Schenkerian techniques and who were fundamental in my development. Dr. Willis Deloney, Dr. </p><p>William Grimes and Dr. Brian Shaw, members of the jazz studies department provided the </p><p>utmost support for my studies. I took great pride in working with them. </p><p> The concept of using triads as an improvisational tool was first introduced to me my Jon </p><p>Damian, Chan Johnson, and Larry Sinibaldi nearly three decades ago; this is the genesis of my </p><p>musical problem addressed here. Luthier Abe Rivera changed the course of my life by reinstating </p><p>music as my primary focus. I also thank Ann Marie de Zeeuw, my for supported my interest in </p><p>music theory, and Dale Garner whose influence instilled in me a great respect for mathematics </p><p>and the desire to continue to learn. </p></li><li><p>v </p><p>TABLE OF CONTENTS </p><p>ACKNOWLEDGEMENTS .......................................................................................................iv </p><p>LIST OF TABLES ................................................................................................................... vii </p><p>LIST OF FIGURES ................................................................................................................ viii </p><p>LIST OF EXAMPLES ...............................................................................................................ix </p><p>LIST OF DEFINITIONS............................................................................................................xi </p><p>LIST OF ANALYSES ............................................................................................................. xii </p><p>SYMBOLS ............................................................................................................................. xiii </p><p>ABSTRACT ............................................................................................................................. xv </p><p>CHAPTER 1. INTRODUCTION, PRELIMINARIES, AND HISTORICAL CONTEXT ........... 1 </p><p>1.1. Introduction ......................................................................................................................1 </p><p>1.2. Literature Review .............................................................................................................6 </p><p>1.2.1. Jazz Literature ............................................................................................................7 1.2.2. Chord/Scale Relationship Literature ...........................................................................8 </p><p>1.2.2. Triadic Specific Methods for Jazz Improvisation ........................................................8 1.2.3. Triadic Theory............................................................................................................9 </p><p>1.2.4. Group Theory Literature ........................................................................................... 13 1.3. Mathematical Preliminaries ............................................................................................. 14 </p><p>1.4. Non-Traditional Triad Usage in a Historical Context....................................................... 22 </p><p>CHAPTER 2. SET DEFINITION............................................................................................. 30 </p><p>2.1. Introduction .................................................................................................................... 30 2.2. Diatonic Harmony........................................................................................................... 31 </p><p>2.3. Modal Harmony .............................................................................................................. 32 2.4. Dominant Action ............................................................................................................ 47 </p><p>2.5. Tonic Systems................................................................................................................. 61 2.6. Chord/Scale Relationships .............................................................................................. 77 </p><p>2.6.1. The Aebersold/Baker Chord/Scale Method ............................................................... 77 </p><p>2.6.2. Nettles and Grafs Chord/Scale Theory ................................................................... 78 2.6.3. George Russells Lydian Chromatic Concept of Tonal Organization ........................ 79 </p><p>2.7. Triad Specific Methods ................................................................................................... 81 </p><p>2.7.1. Gary Campbells Triad Pairs.................................................................................... 82 2.7.2. George Garzones Triadic Chromatic Approach ....................................................... 85 2.7.3. Larry Carltons Chord-Over-Chord Approach .......................................................... 86 </p><p>CHAPTER 3. GROUP ACTIONS ........................................................................................... 96 </p><p>3.1. Introduction .................................................................................................................... 96 3.2. Scale Roster .................................................................................................................... 96 </p><p>3.3. Symmetries on 4 Elements .............................................................................................. 98 3.4. Symmetries on 6 and 8 Elements................................................................................... 100 </p><p>3.5. Symmetries on 5 and 7 Elements: p-groups ................................................................... 115 </p></li><li><p>vi </p><p>CHAPTER 4. APPLICATION ............................................................................................... 118 </p><p>4.1. p-group Application ...................................................................................................... 118 </p><p>4.2. 3T Systems Revisited..................................................................................................... 119 </p><p>CHAPTER 5. CONCLUSIONS AND ADDITIONAL RESEARCH ...................................... 134 </p><p>5.1. Conclusions .................................................................................................................. 134 </p><p>5.2. Additional Musical Applications ................................................................................... 135 5.3. Additional Mathematical Questions .............................................................................. 137 </p><p>APPENDIX A. MODAL HARMONY .................................................................................... 141 </p><p>APPENDIX B. LEAD SHEETS .............................................................................................. 149 </p><p>APPENDIX C. AEBERSOLD/BAKER SCALE SYLLABUS ................................................ 155 </p><p>APPENDIX D. PERMUTATION LISTS ................................................................................ 157 </p><p>APPENDIX E. DISCOGRAPHY ............................................................................................ 164 </p><p>APPENDIX F. COPYRIGHT PERMISSION.......................................................................... 165 </p><p>BIBLIOGRAPHY ................................................................................................................... 170 </p><p>VITA ...................................................................................................................................... 178 </p></li><li><p>vii </p><p>LIST OF TABLES </p><p>Table 1. T/I conjugation ............................................................................................................ 60 </p><p>Table 2. A4 Cayley table ............................................................................................................ 93 </p><p>Table 3. Scale roster .................................................................................................................. 97 </p><p>Table 4. Alternating group A4 (Oct(1,2), O). .......................................................................... 112 </p></li><li><p>viii </p><p>LIST OF FIGURES </p><p>Figure 1. Cohns Hyper-Hexatonic System................................................................................ 12 </p><p>Figure 2. Symmetries of the triangle .......................................................................................... 21 </p><p>Figure 3. Ionian as (D(), C7): i .................................................................................................. 35 </p><p>Figure 4. Dorian as (D(), C7): r ................................................................................................. 36 </p><p>Figure 5. E := (A, D12) ............................................................................................................... 55 </p><p>Figure 6. Geometric duality and Bemsha Swings final sonority ............................................ 61 </p><p>Figure 7. Symmetries of the square D8................................................................................... 69 </p><p>Figure 8. Group Y ...................................................................................................................... 72 </p><p>Figure 9. Y E4 D ................................................................................................................ 76 </p><p>Figure 10. Bk group J: r ......................................................................................................... 91 </p><p>Figure 11. Tetrahedral symmetry, A4 ......................................................................................... 92 </p><p>Figure 12. Rhomboidal full symmetry group V4 ..................................................................... 99 </p><p>Figure 13. Hexagonal symmetry D12.................................................................................... 101 </p><p>Figure 14. Octagonal group D16 ........................................................................................... 102 </p><p>Figure 15. O := ............................................................................................................. 104 </p><p>Figure 16. Octahedral dualism ................................................................................................. 109 </p><p>Figure 17. (Oct(x,y), O): .................................................................................................. 110 </p><p>Figure 18. Geometric modeling of A4 (Oct(1,2), O) ............................................................... 112 </p><p>Figure 19.1. Octahedral full symmetry group, tetrahedron ....................................................... 114 </p><p>Figure 19.2. Octahedral full symmetry group, cube ................................................................. 114 </p><p>Figure 20. Pentagonal full symmetry group D10 ................................................................... 116 </p><p>Figure 21. Septagonal full symmetry group ............................................................................. 117 </p><p>Figure 22. Torus ...................................................................................................................... 122 </p><p>Figure 23. Toroidal polygon .................................................................................................... 124 </p><p>Figure 24. Fano plane .............................................................................................................. 137 </p></li><li><p>ix </p><p>LIST OF EXAMPLES </p><p>Exampl...</p></li></ul>